If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2-18b-9=0
a = 8; b = -18; c = -9;
Δ = b2-4ac
Δ = -182-4·8·(-9)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{17}}{2*8}=\frac{18-6\sqrt{17}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{17}}{2*8}=\frac{18+6\sqrt{17}}{16} $
| -14x²+4x+14=-6x | | 5x-28=7(x-12) | | (4x+9)/(7/3)=3x/0.5 | | 3x^+4x+3=0 | | 20+90+x=180 | | 5+2j=31 | | 5x^2-8x=132 | | 3.5x-3.5=4x-11 | | 8(2d-3)=6(4d-5) | | x/8=118 | | -12–3m=30–6m | | 8(x)=-2 | | 4k^2-126=10k | | 20+36+54+70+x=180 | | H=-5t²+25t | | X^4+17x+72=0 | | x-4.9=8.64 | | 3.4n-1=0 | | 54+20+36+x=180 | | 9y14=126 | | 3+5n=2n+15 | | H=625t+25t | | 6h+3=11 | | x–3=–1 | | x+3x/6=40 | | x+10=3x-10=2x | | 2-3/4=1/8k+9 | | 5x+9+2x-7+8x-4=-12 | | 2(x-2)+7x=-22 | | 5u-10=3u+12 | | 5x-2x=35 | | 7y+2=4y+23 |